Intermediate-valent $Ce_{23}Ru_7Mg_4$ and $RE_{23}Ru_7Mg_4$ (RE = La, Pr, Nd) with $Pr_{23}Ir_7Mg_4$ -type Structure

Stefan Linsinger, Matthias Eul, Wilfried Hermes, Rolf-Dieter Hoffmann, and Rainer Pöttgen

Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 30, 48149 Münster, Germany

Reprint requests to R. Pöttgen. E-mail: pottgen@uni-muenster.de

Z. Naturforsch. 2009, 64b, 1345 – 1352; received July 22, 2009

Dedicated to Professor Hubert Schmidbaur on the occasion of his 75th birthday

The rare earth-rich magnesium compounds $RE_{23}Ru_7Mg_4$ (RE = La, Ce, Pr, Nd) were synthesized from the elements in sealed tantalum ampoules in an induction furnace. They crystallize with the hexagonal non-centrosymmetric $Pr_{23}Ir_7Mg_4$ -type structure, space group $P6_3mc$. The structures of $La_{23}Ru_{6.88(1)}Mg_4$ (a = 1017.7(4), c = 2286.5(5) pm, wR2 = 0.0277, $2708\ F^2$, 71 variables), $Ce_{23}Ru_7Mg_4$ (a = 993.5(3), c = 2243.9(8) pm, wR2 = 0.0573, $2268\ F^2$, 70 variables), and $Pr_{23}Ru_7Mg_4$ (a = 996.8(3), c = 2241.5(6) pm, wR2 = 0.0492, $2565\ F^2$, 70 variables) have been refined from single-crystal diffractometer data. The structures are built up from complex three-dimensional networks of edge- and corner-sharing RE_6Ru trigonal prisms. Cavities within these networks are filled by slightly elongated Mg_4 tetrahedra (311-315 pm in $Pr_{23}Ru_7Mg_4$) and RE_6 octahedra. The cerium compound has an a parameter which is even smaller than that of $Nd_{23}Ru_7Mg_4$, indicating intermediate-valent cerium. This was confirmed by magnetic susceptibility measurements. $Ce_{23}Ru_7Mg_4$ shows an average, reduced magnetic moment of $2.01\ \mu_B/Ce$ atom. $Pr_{23}Ru_7Mg_4$ contains stable trivalent praseodymium ($3.64\ \mu_B/Pr$ atom).

Key words: Intermetallics, Cerium, Magnesium, Intermediate Valence

Introduction

The rare earth (RE)-transition metal (T)-magnesium systems have intensively been studied in recent years with respect to phase analyses, crystal structures, and chemical bonding as well as magnetic and mechanical properties. Such $RE_xT_yMg_z$ intermetallics have technical importance for precipitation hardening in modern light weight alloy systems [1]. Crystal chemical details have been reported in the literature [2-5, and references therein].

The *RE*-rich parts of the *RE-T*-Mg systems have intensively been investigated. Two new series of compounds with the compositions RE_4T Mg (T = Co, Ni, Ru, Rh, Pd, Ir, Pt) [2,6–8, and references therein] with Gd₄RhIn-type structure [9] and $RE_{23}T_7$ Mg₄ (T = Ni, Rh, Ir) [10–12] with Pr₂₃Ir₇Mg₄-type [10] have been reported. Both structure types are closely related. The basic structural units are transition metal-centered trigonal prisms of the rare earth elements RE_6T which are condensed to complex three-dimensional networks. The latter is cubic for the Gd₄RhIn type (space group

Table 1. Lattice parameters (Guinier powder data) of the ternary magnesium compounds $RE_{23}Ru_7Mg_4$. The data marked with an asterisk refer to the investigated single crystals.

Compound	a (pm)	c (pm)	V (nm ³)
La ₂₃ Ru ₇ Mg ₄	1017.7(4)	2286.5(5)	2.0510
$La_{23}Ru_{6.88(1)}Mg_4^*$	1017.7(1)	2286.6(5)	2.0510
Ce ₂₃ Ru ₇ Mg ₄	993.5(3)	2243.9(8)	1.9181
Ce ₂₃ Ru ₇ Mg ₄ *	993.5(1)	2243.9(5)	1.9181
$Pr_{23}Ru_7Mg_4$	996.8(3)	2241.5(6)	1.9288
$Pr_{23}Ru_7Mg_4^*$	996.8(1)	2241.5(5)	1.9288
$Nd_{23}Ru_7Mg_4$	993.7(3)	2230.8(6)	1.9077

 $F\bar{4}3m$) and hexagonal for the $Pr_{23}Ir_7Mg_4$ type (space group $P6_3mc$). Cavities within these networks are filled by tetrahedral Mg_4 clusters, a rare structural motif in magnesium chemistry [12].

First investigations revealed interesting properties for these rare earth-rich materials. Gd_4NiMg exhibits antiferromagnetic ordering below $T_N = 92$ K [7]. It absorbs up to 11 hydrogen atoms per formula unit, leading to a drastic change of the magnetic properties. Gd_4NiMgH_{11} remains paramagnetic down to

Empirical formula	La ₂₃ Ru _{6.88(1)} Mg ₄	Ce ₂₃ Ru ₇ Mg ₄	Pr ₂₃ Ru ₇ Mg ₄
Unit cell dimensions	Table 1	Table 1	Table 1
Molar mass, g mol ^{−1}	3987.03	4027.49	4045.66
Calculated density, g cm ⁻³	6.46	6.97	6.97
Crystal size, μ m ³	$20 \times 40 \times 40$	$30 \times 30 \times 80$	$30 \times 40 \times 80$
Transm. ratio (max/min)	2.17	1.81	1.78
Absorption coefficient, mm ^{−1}	25.8	29.3	31.1
Detector distance, mm	80	90	80
Exposure time, min	3	3	3
ω range; increment, deg	0-180, 1.0	0-180, 1.0	0-180, 1.0
Integr. param. A, B, EMS	13.5; 3.0; 0.015	13.0; 3.0; 0.012	13.5; 3.5; 0.012
F(000)	3323	3380	3426
θ range for data collection, deg	2 - 32	2 - 31	2 - 32
Range in hkl	$\pm 15, \pm 15, \pm 34$	$\pm 14, \pm 14, \pm 32$	$\pm 14, \pm 14, \pm 33$
Total no. reflections	25257	19214	43066
Independent reflections $/R_{int}$	2708/0.0551	2268/0.0543	2565/0.0887
Reflections with $I \ge 2\sigma(I) / R_{\sigma}$	2178/0.0480	1429/0.0892	1760/0.0771
Data / parameters	2708/71	2268/70	2565/70
Goodness-of-fit on F^2	0.808	0.713	0.735
$R1/wR2$ for $I \ge 2\sigma(I)$	0.0277/0.0253	0.0318/0.0543	0.0291/0.0467
R1/wR2 for all data	0.0475/0.0277	0.0574/0.0573	0.0513/0.0492
Flack parameter	0.03(2)	0.02(5)	0.02(3)
Extinction coefficient	0.000143(4)	0.00022(1)	0.000224(9)
Largest diff. peak / hole, e $Å^{-3}$	1.95/-2.17	3.81/-1.75	1.85 / -1.90

Table 2. Crystal data and structure refinement for $RE_{23}Ru_7Mg_4$ (RE = La, Ce, Pr), space group $P6_3mc$, Z = 2.

2 K [7]. Ce₂₃Ni₇Mg₄ [11] and Ce₂₃Rh₇Mg₄ [12] are Curie-Weiss paramagnets with stable trivalent cerium. Ce₂₃Rh₇Mg₄ orders antiferromagnetically at 2.9 K. A highly interesting behavior was recently observed for the isotypic cadmium compounds $RE_{23}T_7Cd_4$ (T = Co, Ni, Ru, Rh, Ir, Pt) [13, 14]. All of these compounds fit well within the volume plots, indicating smooth behavior for the lanthanide contraction, except Ce₂₃Ru₇Cd₄ [13, 14]. Here, the a lattice parameter was even smaller than that of the praseodymium compound, and this peculiar behavior was rationalized with intermediate-valent cerium, similar to CeRuSn [15, 16], Ce₂RuZn₄ [17, 18], and CeRuAl [19]. Five of the nine crystallographically independent cerium sites in Ce₂₃Ru₇Cd₄ show Ce-Ru distances which are shorter than the Pr–Ru distances in Pr₂₃Ru₇Cd₄, indicating ordering of trivalent and intermediate-valent cerium in Ce₂₃Ru₇Cd₄. Keeping these interesting physical properties in mind, we were also interested in the corresponding magnesium compounds. Herein we report on the synthesis of the new compounds $RE_{23}Ru_7Mg_4$ with RE = La, Ce, Pr, Nd and their magnetic properties.

Experimental Section

Synthesis

Starting materials for the synthesis of the *RE*₂₃Ru₇Mg₄ samples were ingots of the rare earth metals (Johnson

Matthey and smart elements, > 99.9%), ruthenium powder (Heraeus, $ca.\ 200$ mesh, > 99.9%), and a magnesium rod (Johnson Matthey, $\varnothing \ 16$ mm, > 99.95%, the surface layer of the rod was removed on a turning lathe). The rare earth metal ingots were first cut into smaller pieces and arc-melted [20] to small buttons under an argon atmosphere. The argon was purified with titanium sponge (900 K), silica gel, and molecular sieves.

The rare earth metal buttons, the ruthenium powder, and pieces of the magnesium rod were then weighed in the 23RE:7Ru:4Mg atomic ratios and arc-welded in tantalum tubes with about 1 cm³ tube volume under an argon pressure of about 800 mbar. The ampoules were then placed in a water-cooled sample chamber [21] of a high-frequency furnace (Hüttinger Elektronik, Freiburg, Typ TIG 5/300) and heated for 2 min at about 1300 K, followed by 2 h at ca. 920 K. Finally the tubes were quenched to r.t. The RE₂₃Ru₇Mg₄ samples resulted as brittle reaction products. They could easily be separated from the tubes. No reaction with the container material was observed. Compact pieces and powders are stable in air. Powders are dark gray and single crystals exhibit metallic luster.

EDX data

Semiquantitative EDX analyses on the $RE_{23}Ru_7Mg_4$ crystals investigated on the diffractometer were carried out by use of a Leica 420i scanning electron microscope with LaF₃, CeO₂, PrF₃, Ru, and MgO as standards. The experimentally observed compositions were close to the ideal one. No impurity elements heavier than sodium (detection limit of the instrument) have been found.

X-Ray diffraction

All samples were characterized by Guinier diagrams (imaging plate detector, Fujifilm BAS-1800 readout system) with $CuK\alpha_1$ radiation and α -quartz (a=491.30 and c=540.46 pm) as internal standard. The lattice parameters (Table 1) were refined by a least-squares routine. Accurate indexing was ensured through intensity calculations [22] taking the atomic positions from the structure refinements.

Small single crystals of La₂₃Ru₇Mg₄, Ce₂₃Ru₇Mg₄, and Pr₂₃Ru₇Mg₄ were selected from the crushed annealed samples. Their quality was checked by Laue photographs on a Buerger camera (white Mo radiation). Intensity data were collected at r.t. by use of a Stoe IPDS-II imaging plate diffractometer in oscillation mode (graphite-monochromatized Mo K_{α} radiation). Numerical absorption corrections were applied to the data sets. All relevant details concerning the data collections and evaluations are listed in Table 2.

Structure refinements

The isotypy of the $RE_{23}Ru_7Mg_4$ compounds with the corresponding $RE_{23}T_7Mg_4$ compounds with T = Ni, Rh, Ir [10-12] could already be assumed from the Guinier patterns. Careful evaluation of the data sets then showed that the systematic extinctions were compatible with space group P6₃mc, in agreement with the Pr₂₃Ir₇Mg₄ type [10]. The atomic parameters of isotypic La₂₃Rh₇Mg₄ [12] were taken as starting values, and the three structures were refined using SHELXL-97 [23] (full-matrix least-squares on F^2) with anisotropic atomic displacement parameters for the rare earth and transition metal atoms and isotropic displacement parameters for the light magnesium atoms. Since the structure refinement of the prototype Pr₂₃Ir₇Mg₄ [10] revealed small defects on the Ir2 site, also the occupancy parameters of the RE₂₃Ru₇Mg₄ crystals were refined in separate series of leastsquares cycles. Since for Ce23Ru7Mg4 and Pr23Ru7Mg4 all sites were fully occupied within two standard deviations, in the final cycles the ideal occupancy parameters were assumed again. In contrast, the La23Ru7Mg4 crystal revealed small defects for the Ru2 site, and this occupancy parameter was refined as a least-squares variable in the final refinement, leading to a composition La₂₃Ru_{6.88(1)}Mg₄ for the investigated crystal. Refinement of the correct absolute structure was ensured through calculation of the Flack parameter [24, 25]. The final difference Fourier syntheses were flat (Table 2). The positional parameters and interatomic distances are listed in Tables 3 and 4.

Further details of the crystal structure investigations may be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de, http://www.fiz-informationsdienste.de/en/DB/icsd/depot_anforderung.html)

Table 3. Atomic coordinates and isotropic displacement parameters (pm²) for La₂₃Ru_{6.88}Mg₄, Ce₂₃Ru₇Mg₄ and Pr₂₃-Ru₇Mg₄. $U_{\rm eq}$ is defined as one third of the trace of the orthogonalized $U_{\rm ij}$ tensor. The Ru2 site of La₂₃Ru_{6.88(1)}Mg₄ is occupied by 95.7(4) %. The investigated La₂₃Ru_{6.88(1)}Mg₄ single crystal had the other absolute structure.

Atom	W. position	x	y	Z	$U_{ m eq}$
La ₂₃ R	$u_{6.88(1)}Mg_4$				- cq
La1	6c	0.87229(4)	-x	0.86461(3)	137(1)
La2	6 <i>c</i>	0.79238(4)	-x	0.71840(2)	121(1)
La3	6c	0.79179(4)	-x	0.55040(2)	125(1)
La4	6 <i>c</i>	0.79172(5)	-x	0.00780(3)	181(1)
La5	6 <i>c</i>	0.45894(4)	-x	0.91372(5)	128(1)
La6	6 <i>c</i>	0.45990(4)	-x	0.64381(2)	158(1)
La7	2b	2/3	1/3	0.85320(4)	114(2)
La8	$\frac{2a}{2a}$	0	0	0.99784(5)	125(2)
La9	6 <i>c</i>	0.20781(4)	-x	0.78032(3)	131(1)
Ru1	6 <i>c</i>	0.51676(5)	-x	0.78916(3)	167(2)
Ru2	6 <i>c</i>	0.14692(5)	-x	0.93819(4)	178(3)
Ru3	2b	2/3	1/3	0.62957(6)	174(3)
Mg1 ^a	6 <i>c</i>	0.10373(19)	-x	0.63609(17)	145(7)
Mg2a	2a	0	0	0.7480(2)	135(13)
Ce ₂₃ R	u_7Mg_4				. ,
Ce1	6 <i>c</i>	0.12924(7)	-x	0.13586(5)	153(2)
Ce2	6 <i>c</i>	0.20521(8)	-x	0.28324(5)	154(2)
Ce3	6 <i>c</i>	0.20824(8)	-x	0.44962(5)	144(3)
Ce4	6 <i>c</i>	0.20888(10)	-x	0.99330(6)	234(3)
Ce5	6 <i>c</i>	0.54097(7)	-x	0.08446(6)	139(2)
Ce6	6c	0.54028(8)	-x	0.35721(5)	174(3)
Ce7	2b	1/3	2/3	0.14645(9)	150(4)
Ce8	2a	0	0	0.99880(10)	158(4)
Ce9	6 <i>c</i>	0.79154(7)	-x	0.21967(7)	149(2)
Ru1	6c	0.48599(12)	-x	0.21213(9)	361(5)
Ru2	6c	0.85134(12)	-x	0.05670(12)	421(6)
Ru3	2b	1/3	2/3	0.37306(17)	349(9)
Mg1 ^a	6c	0.8949(3)	-x	0.3643(3)	113(13)
Mg2 ^a	2a	0	0	0.2495(5)	82(23)
Pr ₂₃ Rı	17Cd4				
Pr1	6c	0.12820(5)	-x	0.13608(4)	114(2)
Pr2	6c	0.20741(6)	-x	0.28182(3)	99(2)
Pr3	6c	0.20817(6)	-x	0.44937(3)	107(2)
Pr4	6c	0.20890(7)	-x	0.99301(4)	162(2)
Pr5	6c	0.54117(6)	-x	0.08535(4)	102(2)
Pr6	6c	0.54065(6)	-x	0.35661(5)	136(2)
Pr7	2b	1/3	2/3	0.14611(6)	92(3)
Pr8	2a	0	0	0.00211(7)	105(3)
Pr9	6 <i>c</i>	0.79168(5)	-x	0.21951(5)	108(2)
Ru1	6c	0.48280(8)	-x	0.21015(5)	155(3)
Ru2	6 <i>c</i>	0.85346(8)	-x	0.06237(6)	182(3)
Ru3	2b	1/3	2/3	0.36935(11)	176(5)
Mg1 ^a	6 <i>c</i>	0.8947(3)	-x	0.3640(3)	111(11)
Mg2 ^a	2 <i>a</i>	0	0	0.2514(4)	75(18)

^a These positions have been refined with isotropic displacement parameters.

on quoting the deposition numbers CSD-420863 ($La_{23}Ru_7Mg_4$), CSD-420864 ($Ce_{23}Ru_7Mg_4$), and CSD-420865 ($Pr_{23}Ru_7Mg_4$).

Table 4. Interatomic distances (pm) of $La_{23}Ru_{6.88(1)}Mg_4$, $Ce_{23}Ru_7Mg_4$ and $Pr_{23}Ru_7Mg_4$, calculated with the powder lattice parameters. Standard deviations are all equal or smaller than 0.9 pm.

Lau	D.,		Ma.	Consi	D.,	7Mg ₄		Dn	D.,	7Mg ₄	
		6.88(1)					200.2				200.4
La1:	2	Ru2	296.2	Ce1:	2	Ru2	299.3	Pr1:	2	Ru2	290.4
	1	Mg2	348.9		1	Mg2	338.3		1	Mg2	340.3
	1	La4	356.9		1	Ce4	348.0		1	Pr4	349.7
	1	La2	362.8		1	Ce7	352.0		1	Pr2	354.1
	1	La7	363.4		1	Ce2	355.6		1	Pr7	354.9
	2	Ru1	367.7		2	Ru1	359.7		2	Ru1	358.0
	2	La9	373.6		2	Ce9	365.7		2	Pr9	365.7
	1	La8	378.8		2	Ce5	372.6		1	Pr8	373.1
	2	La5	381.2		1	Ce8	379.5		2	Pr5	374.2
	2	La1	389.9		2	Ce1	385.2		2	Pr1	383.4
La2:	2	Ru1	294.2	Ce2:	2	Ru1	291.8	Pr2:	2	Ru1	289.1
	1	Ru3	300.6		1	Ru3	298.7		1	Ru3	292.9
	2	La6	360.9		2	Ce6	352.8		1	Pr1	354.1
	1	La1	362.8		1	Ce1	355.6		2	Pr6	354.5
	2	Mg1	368.6		2	Mg1	355.9		2	Mg1	360.7
	1	Mg2	372.2		1	Mg2	361.2		1	Mg2	364.5
	1	La7	379.6		1	Ce3	373.4		1	Pr7	373.9
	2	La2	383.8		1	Ce7	377.9		1	Pr3	375.6
	1	La3	384.1		2	Ce2	381.9		2	Pr2	376.6
	2	La9	392.6		2	Ce9	383.5		2	Pr9	385.1
La3:	1	Ru2	278.4	Ce3:	1	Ru2	261.2	Pr3:	1	Ru2	274.7
	1	Ru3	285.3		1	Ru3	275.4		1	Ru3	280.8
	2	Mg1	373.4		2	Mg1	364.6		2	Mg1	365.4
	2	La4	379.8		2	Ce5	371.6		2	Pr4	373.1
	2	La3	382.0		2	Ce4	372.0		2	Pr5	373.8
	2	La5	382.8		2	Ce3	372.9		2	Pr3	374.3
	2	La6	383.0		1	Ce2	373.4		2	Pr6	375.1
	1	La2	384.1		2	Ce6	373.5		1	Pr2	375.6
	1	La8	386.2		1	Ce8	374.9		1	Pr8	378.3
La4:	1	Mg1	346.4	Ce4:	1	Mg1	340.0	Pr4:	1	Mg1	340.0
Lu I.	1	Lal	356.9	CC 1.	1	Ce1	348.0	11	1	Pr1	349.7
	2	Ru2	363.5		2	Ru2	350.6		2	Ru2	356.4
	1	La8	367.8		1	Ce8	359.7		1	Pr8	361.2
	2	La3	379.8		2	Ce4	370.9		2	Pr4	372.1
	2	La4	381.8		2	Ce3	372.0		2	Pr3	373.1
	2	La4 La6	382.0		2	Ce5	372.6		2	Pr6	374.5
	2	La5	385.0		2	Ce6	374.0		2	Pr5	375.1
	1	La3	416.6		1	Ce7	404.9		1	Pr7	404.9
La5:	2	Ru2	295.6	Ce5:	2	Ru2	288.0	Pr5:	2	Ru2	289.4
LaJ.	1	Ru2	302.5	Ces:	1	Ru2 Ru1	301.7	r13.	1	Ru2	297.4
	2	La9			2				2	Pr9	
			376.9			Ce3	371.6				370.4
	2	La1	381.2		2	Ce9	372.2		2	Pr3	373.8
	2	La3	382.7		2	Ce1	372.6		2	Pr1	374.2
	2	La5	383.5		2	Ce4	372.6		2	Pr4	375.0
	2	La4	385.0		2	Ce5	374.6		2	Pr5	375.3
	1	La7	391.4		1	Ce7	383.4		1	Pr7	383.8

Physical property measurements

The magnetic and heat capacity measurements were carried out on a Quantum Design Physical Property Measurement System (PPMS) using the VSM and heat capacity options, respectively. For VSM measurements, the samples (15.135 mg for $Ce_{23}Ru_7Mg_4$; 27.311 mg for $Pr_{23}Ru_7Mg_4$) were packed in kapton foil and attached to the sample holder

Table 4 (continued).

La ₂₃ Ru _{6.88(1)} Mg ₄			Ce ₂₃ Ru ₇ Mg ₄			Pr ₂₃ Ru ₇ Mg ₄					
La6:		Ru1		Ce6:		Ru1	338.7			Mg1	342.0
	2	Mg1			2	Mg1	341.1			Ru1	343.2
		La2	360.9			Ce2	352.8			Pr2	354.5
	1	Ru3	365.9			Ru3	357.9			Ru3	359.1
		La4	382.0			Ce3	373.5			Pr4	374.5
		La3	383.0			Ce4	374.0			Pr3	375.1
		La9	383.1			Ce6	376.7			Pr9	376.0
		La6	386.4			Ce9	376.8			Pr6	376.8
La7:		Ru1	302.1	Ce7:		Ru1	301.2	Pr7·		Ru1	295.3
Lu7.		La1	363.4	CC7.		Ce1	352.0	11/.		Pr1	354.9
	3	La2	379.6			Ce2	377.9			Pr2	373.9
		La5	391.4			Ce5	383.4			Pr5	383.8
		La4	416.6			Ce4	404.9			Pr4	404.9
La8:	3	Ru2	292.7	Ce8:		Ru2	286.9	Pr8.		Ru2	286.8
Lao.		Mg1	365.2	CCo.		Mg1		110.		Mg1	
		La4	367.8			Ce4	359.7			Pr4	361.2
		La1	378.9			Ce3	374.9			Pr1	373.1
	3	La3	386.2			Ce1	379.5			Pr3	378.4
La9:		Ru1	287.0	Ce9:		Ru1	276.3	DeO:		Ru1	281.6
Lay.		Lal	373.6	Ce9.	1			F19.		Pr1	365.7
	1		373.0			Ce1	364.9 365.7		1	Mg2	
	1	_								Ru2	366.7 368.1
		Ru2 La5	376.6		1	Mg1 Ce9	370.1 372.2				369.5
			376.9						1	_	370.4
	1	Mg1	377.4			Ce5	372.2			Pr5 Pr9	
		La6	383.1			Ce6	376.8			Pr6	373.9
		La9 La2	383.2		1	Ru2 Ce2	379.9			Pr2	376.0
D.,1.		La2 La9	392.6	D.,1.		Ce2	383.5	D.,1.			385.1
Ru1:			287.0	Ru1:		Ce ₂	276.3	Ku1:		Pr9 Pr2	281.6 289.1
	1	La2	294.2		1		291.8		1	Pr7	
	1	La7	302.1		1	Ce7 Ce5	301.2		1	Pr5	295.3 297.4
	1	La5	302.5		1		301.7		1		
	2	La6	347.1			Ce6 Ce1	338.7			Pr6 Pr1	343.2
D.,2.	1	Lal	367.7	D.,2.			359.7	D.,2.	1		358.0
Ru2:	1	La3	278.4	Ru2:	1	Ce3	261.2	Ku2:		Pr3	274.7
		La8 La5	292.7			Ce8	286.9			Pr8 Pr5	286.8
			295.6			Ce5	288.0				289.4
		La1	296.2			Ce1	299.3			Pr1	290.4
		La4	363.5			Ce4	350.6			Pr4	356.4
D2.	1	La9	376.6	D2.	1	Ce9	379.9	D2.	1	Pr9	368.1
Ru3:		La3	285.3	Ru3:		Ce3	275.4	Ku3:		Pr3	280.8
		La2	300.6		3	Ce2	298.7			Pr2	292.9
3.	3	La6	365.9	3.7.1	3	Ce6	357.9	3.6.1		Pr6	359.1
Mg1:	1	Mg2	314.5	Mg1:				Mg1:		Mg2	
		Mg1	316.7		1		314.9			Mg1	314.9
	1	La4	346.4		1		340.1			Pr4	340.0
			351.6			Ce6				Pr6	
		La8	365.2			Ce8	351.9			Pr8	359.0
		La2	368.6			Ce2	355.9			Pr2	360.7
		La3	373.4			Ce3	364.6			Pr3	365.4
	1	La9	377.4		1	Ce9	370.1		1	Pr9	369.5
Mg2:		Mg1	314.5	Mg2:		Mg1		Mg2:		Mg1	311.1
		Lal	348.9			Ce1	338.3			Pr1	340.2
		La2	372.2			Ce2	361.2			Pr2	364.5
	3	La9	373.7		3	Ce9	364.9		3	Pr9	366.7

rod for measuring the magnetic properties in the temperature range $2.2-305~\rm K$ with magnetic flux densities up to 80 kOe. For heat capacity ($C_{\rm P}$) measurements ($2.1-300~\rm K$)

the samples (7.265 mg for Ce₂₃Ru₇Mg₄; 26.024 mg for Pr₂₃Ru₇Mg₄) were fixed to the platform of a pre-calibrated heat capacity puck using Apiezon N grease.

Discussion

Crystal chemistry

The ternary rare earth-rich compounds RE_{23} -Ru₇Mg₄ with RE = La, Ce, Pr, Nd are new members of the family of compounds with the complex hexagonal Pr₂₃Ir₇Mg₄ type [10]. Similar to the other isotypic series $RE_{23}T_7$ Mg₄ (T = Ni, Rh, Ir) [10–12] and $RE_{23}T_7$ Cd₄ (T = Co, Ni, Ru, Rh, Ir, Pt) [13, 14]), also the RE_{23} Ru₇Mg₄ compounds only form with the larger rare earth elements. With the smaller rare earth elements only the RE_4T Mg [2, 6–8] and RE_4T Cd [26] phases exist. Since the crystal chemistry of the RE_4T Mg and $RE_{23}T_7$ Mg₄ phases has repeatedly been discussed, herein we focus only on the structural peculiarities within the RE_{23} Ru₇Mg₄ series.

As is evident from Table 1, the lattice parameter *a* of Ce₂₃Ru₇Mg₄ is even smaller than the one of Nd₂₃Ru₇Mg₄, while the lattice parameter *c* of Ce₂₃Ru₇Mg₄ is compatible with the lanthanide contraction. This result is very similar to the *RE*₂₃Ru₇Cd₄ series [13, 14]. Due to the intermediate-valent character of some of the cerium atoms in Ce₂₃Ru₇Mg₄ (*vide infra*), one observes shorter Ce–Ru distances for those. Since the Ce₆Ru trigonal prisms as the main building blocks in Ce₂₃Ru₇Mg₄ are predominantly condensed in the *ab* direction (Fig. 1), this shortening of the Ce–Ru distances expresses itself also in a significant contraction of the *a* direction.

In order to see the influence of the intermediate cerium valence on the local ruthenium coordination, we have refined the structure of Ce₂₃Ru₇Mg₄ and also those with the neighboring rare earth elements, *i. e.* La₂₃Ru₇Mg₄ and Pr₂₃Ru₇Mg₄ from single-crystal X-ray data. The interatomic distances are listed in Table 4, and the different ruthenium coordination polyhedra (tricapped trigonal prisms) are presented in Fig. 2.

Within the tricapped trigonal prisms, each ruthenium atom has six closer cerium neighbors building the prisms, while the three cerium atoms caping the latter are at somewhat longer distances. This way we can describe the near-neighbor environment as a typical 6 + 3 coordination. The Ce–Ru distances for the six closest neighbors range from 261 to 302 pm. Several of these Ce–Ru distances are smaller than the sum of

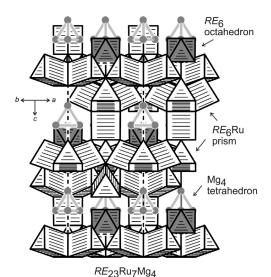


Fig. 1. View of the $RE_{23}Ru_7Mg_4$ structure approximately along the [110] direction. The network of condensed trigonal $RuRE_6$ prisms, the Mg_4 tetrahedra and the empty RE_6 octahedra (medium gray shading) are emphasized.

the covalent radii [27] of 289 pm for cerium and ruthenium. Such short Ce–Ru distances are a strong hint for intermediate-valent (*i. e.* smaller) cerium. In the meantime, such short Ce–Ru distances have repeatedly been observed for binary and ternary cerium intermetallics. A full list has been published recently [19]. Electronic structure calculations for CeRuSn [16], Ce₂RuZn₄ [18], and CeRuAl [19] showed strong Ce–Ru bonding for these interactions.

Finally we compare the RE_{23} Ru₇Mg₄ (RE = La, Ce, Pr) series with the isotypic RE_{23} Ru₇Cd₄ (RE = La, Ce, Pr) compounds [13, 14]. Although cadmium (141 pm) has a larger covalent radius [27] than magnesium (136 pm), the course of the lattice parameters for Ce₂₃Ru₇Mg₄ (a = 993.5(3) and c = 2243.9(8) pm, V = 1.9181 nm³) and Ce₂₃Ru₇Cd₄ [13, 14] (a = 988.7(3), c = 2241.6(5) pm, V = 1.8977 nm³) shows the inverse trend. This already indicates a stronger trend *versus* intermediate-valent cerium in the cadmium compound, in agreement with the course of the Pauling electronegativities of 1.31 for magnesium and 1.69 for cadmium [27].

These trends are in line with small differences in the cerium near neighbor coordinations of Ce₂₃Ru₇Mg₄ and Ce₂₃Ru₇Cd₄. In the structure of the cadmium compound (the same setting has been used for both structure refinements), the Ce₁, Ce₂, Ce₅, and Ce₇ atoms can be considered as purely trivalent, while Ce₃, Ce₄,

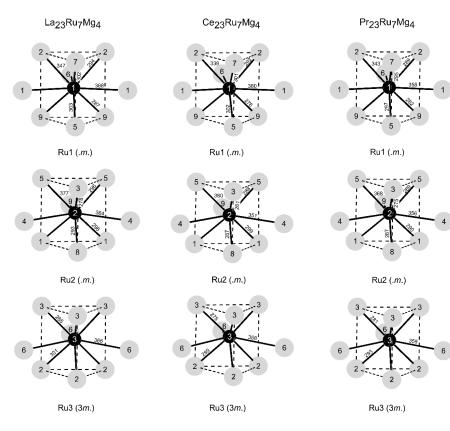


Fig. 2. Near-neighbor coordination of the ruthenium atoms in $RE_{23}Ru_7Mg_4$ (RE=La, Ce, Pr). Rare earth and ruthenium atoms are drawn as light gray and black circles, respectively. Relevant interatomic distances are indicated.

Ce6, Ce8, and Ce9 are in an intermediate valence state. This is slightly different in Ce₂₃Ru₇Mg₄. Here, Ce1, Ce2, Ce7, and Ce8 can be considered as trivalent (larger Ce–Ru than Pr–Ru distances), while Ce3, Ce4, Ce5, Ce6, and Ce9 tend towards intermediate cerium valence. Thus, 30 of the 46 cerium atoms per unit cell are in an intermediate valence state. The differences between the Ce₂₃Ru₇Mg₄ and Ce₂₃Ru₇Cd₄ structures are due to the difference in size of the Mg₄ and Cd₄ tetrahedra which slightly influences the cerium coordinations also.

The resulting experimental magnetic moment of Ce₂₃Ru₇Mg₄ in the paramagnetic regime (*vide infra*) is the average of the nine crystallographically independent cerium atoms. An assignment of the degree of intervalency based on these data is not possible. As a consequence of the intermediate cerium valence, the ruthenium atoms show enhanced displacements (Table 3) as compared to Pr₂₃Ru₇Mg₄ and Nd₂₃Ru₇Mg₄.

Physical properties

In Fig. 3 the temperature dependence of the inverse magnetic susceptibility of $Ce_{23}Ru_7Mg_4$ and

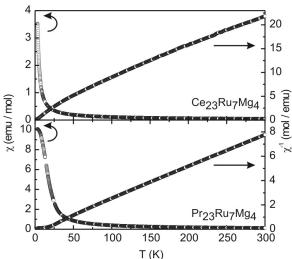


Fig. 3. Temperature dependence of the magnetic susceptibility (χ and χ^{-1} data) of $Ce_{23}Ru_7Mg_4$ and $Pr_{23}Ru_7Mg_4$ measured at 10 kOe.

 $Pr_{23}Ru_7Mg_4$ is shown. The reciprocal magnetic susceptibility of $Ce_{23}Ru_7Mg_4$ had to be fitted with a modified Curie-Weiss law $\chi^{-1} = [\chi_0 + (C/T - \theta_P)]^{-1}$

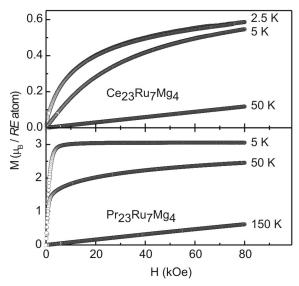


Fig. 4. Magnetization isotherms of $Ce_{23}Ru_7Mg_4$ and $Pr_{23}Ru_7Mg_4$ measured at various temperatures.

above 50 K, leading to a temperature-independent term $\chi_0 = 8.7(3) \times 10^{-3}$ emu mol⁻¹, a Weiss constant of $\theta_P = -13.7(8)$ K and an effective paramagnetic moment of $\mu_{\text{eff}} = (8C/23)^{1/2} = 2.01(3) \,\mu_{\text{B}}$ per Ce atom. This value is significantly lower than the free ion value of 2.54 μ_B for Ce³⁺ and can be attributed to not all cerium atoms being in a trivalent state. The effective moment is equal to about 63 % of Ce³⁺ in the compound and is in accordance with the crystal data (vide supra). Due to the nine crystallographically independent cerium sites with different site symmetries, we are not able to assign the oxidation state for each site. The negative Weiss constant is indicative of antiferromagnetic interactions, though no magnetic ordering was detected down to 3 K. In contrast we observe a Curie-Weiss behavior for Pr₂₃Ru₇Mg₄ above 50 K with an experimental effective magnetic moment of 3.64(1) μ_B per Pr atom which is in good agreement with the free ion value of 3.58 μ_B for Pr^{3+} . Extrapolation of the χ^{-1} vs. T data to χ^{-1} = 0 led to a Weiss constant of $\theta_P = 2.4(2)$ K for $Pr_{23}Ru_7Mg_4$, indicative of ferromagnetic interactions. No magnetic ordering down to 3 K was detected for the praseodymium compound.

The magnetization isotherms taken at 2.5, 5, and 50 K for $Ce_{23}Ru_7Mg_4$ as well as those taken at 5, 50, and 150 K for $Pr_{23}Ru_7Mg_4$ are displayed in Fig. 4. We observe an almost linear increase of the magnetization with the applied field at 50 K for the $Ce_{23}Ru_7Mg_4$

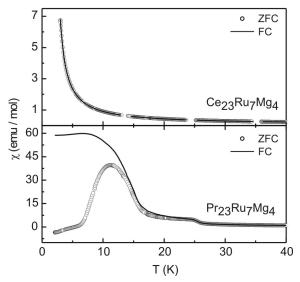


Fig. 5. Low-temperature susceptibility measurements (zero field cooled and field cooled states) of $Ce_{23}Ru_7Mg_4$ and $Pr_{23}Ru_7Mg_4$ measured at 100 Oe.

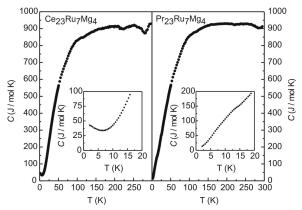


Fig. 6. Heat capacity measurements of $Ce_{23}Ru_7Mg_4$ and $Pr_{23}Ru_7Mg_4$ without an external applied field. The insets magnify the low-temperature range up to 20 K.

and at 25 K for the corresponding praseodymium compound as expected for a paramagnetic material. At 2.5 and 5 K the curvatures of the magnetization isotherms of $Ce_{23}Ru_7Mg_4$ become more pronounced and show a tendency for saturation at high fields. It may be noted here that the maximum saturation moment of 0.59(1) μ_B per Ce atom observed at 80 kOe and 2.5 K does not reach the expected moment value of 2.14 μ_B per Ce atom (according to $g_J \times J$). The reduced moment can be ascribed to crystal field splitting of the J=5/2 ground state and due to the fact that not all Ce atoms are in a

stable trivalent state. This has also been observed in $Ce_{23}Ru_7Cd_4$ [14].

At 5 K the magnetization isotherm of $Pr_{23}Ru_7Mg_4$ is indicative of parallelly oriented magnetic moments, with no hysteresis being noted. The saturation magnetization at 80 kOe and 5 K is 3.05(1) μ_B per Pr atom, which is in a good agreement with the theoretical value of 3.20 μ_B per Pr atom, indicating full parallel spin alignment.

The low-field susceptibility (H = 100 Oe) measured in the zero field cooled (ZFC) and field cooled (FC) states of the samples is represented in Fig. 5. For $Ce_{23}Ru_7Mg_4$ no magnetic ordering could be observed down to 2.2 K. However, kink-point measurements display ferro- or ferrimagnetic ordering for $Pr_{23}Ru_7Mg_4$ at around 15 K. Below this temperature a strong bifurcation between the ZFC and FC states is clearly visible. At 25 K there is an additional small anomaly visible (not seen in heat capacity), which can be attributed to minor impurities of Pr_3Ru ordering ferromagneti-

cally ($T_{\rm C}=25~{\rm K}$ [28]). Due to the absence of a λ -like anomaly and only a broad peak in the heat capacity measurement at around 15 K (see inset of Fig. 6) in $Pr_{23}Ru_7Mg_4$, long-range magnetic ordering can be ruled out. These findings in conjunction with the strong bifurcation observed in ZFC-FC measurement below 13 K, are indicative of a spin glass behavior without long-range magnetic ordering. The heat capacity measurement of $Ce_{23}Ru_7Mg_4$ shows an upturn starting at around 6 K (see inset of Fig. 6). This fact, in conjunction with the steep upturn in the ZFC-FC measurement, suggests the onset of long-range ferro- or ferrimagnetic ordering.

Acknowledgements

We are indebted to Dipl.-Ing. U. Ch. Rodewald for the intensity data collections. This work was financially supported by the Deutsche Forschungsgemeinschaft. W. H. thanks the NRW Graduate School of Chemistry and the Fonds der Chemischen Industrie for a PhD stipend.

- [1] K. U. Kainer (Ed.), Magnesium, Proceedings of the 6th International Conference on Magnesium Alloys and their Applications, Wiley-VCH, Weinheim, **2004**.
- [2] U. Ch. Rodewald, B. Chevalier, R. Pöttgen, J. Solid State Chem. 2007, 180, 1720.
- [3] P. Solokha, S. De Negri, A. Saccone, V. Pavlyuk, B. Marciniak, J.-C. Tedenac, *Acta Crystallogr.* 2007, C63, i13.
- [4] S. De Negri, P. Solokha, A. Saccone, V. Pavlyuk, *Intermetallics* 2009, 17, 614.
- [5] P. Solokha, S. De Negri, V. Pavlyuk, A. Saccone, Solid State Sci. 2009, 11, 801.
- [6] S. Tuncel, B. Chevalier, R. Pöttgen, Z. Naturforsch. 2008, 63b, 600.
- [7] S. Tuncel, J.G. Roquefère, C. Stan, J.-L. Bobet, B. Chevalier, E. Gaudin, R.-D. Hoffmann, U. Ch. Rodewald, R. Pöttgen, J. Solid State Chem. 2009, 182, 229.
- [8] S. Linsinger, W. Hermes, B. Chevalier, S. Couillaud, J.-L. Bobet, M. Eul, R. Pöttgen, *Intermetallics* 2009, 17, 1028.
- [9] R. Zaremba, U.Ch. Rodewald, R.-D. Hoffmann, R. Pöttgen, Monatsh. Chem. 2007, 138, 523.
- [10] U. Ch. Rodewald, S. Tuncel, B. Chevalier, R. Pöttgen, Z. Anorg. Allg. Chem. 2008, 634, 1011.
- [11] S. Tuncel, W. Hermes, B. Chevalier, U. Ch. Rodewald, R. Pöttgen, Z. Anorg. Allg. Chem. 2008, 634, 2140.
- [12] S. Linsinger, S. Tuncel, W. Hermes, M. Eul, B. Chevalier, R. Pöttgen, Z. Anorg. Allg. Chem. 2009, 635, 282.
- [13] F. Tappe, R. Pöttgen, Z. Naturforsch. **2009**, 64b, 184.
- [14] F. Tappe, W. Hermes, M. Eul, R. Pöttgen, *Inter-metallics* 2009, 17, 1035.

- [15] J. F. Riecken, W. Hermes, B. Chevalier, R.-D. Hoff-mann, F. M. Schappacher, R. Pöttgen, Z. Anorg. Allg. Chem. 2007, 633, 1094.
- [16] S. F. Matar, J. F. Riecken, B. Chevalier, R. Pöttgen, V. Eyert, *Phys. Rev. B* 2007, 76, 174434.
- [17] R. Mishra, W. Hermes, U. Ch. Rodewald, R.-D. Hoff-mann, R. Pöttgen, Z. Anorg. Allg. Chem. 2008, 634, 470.
- [18] V. Eyert, E.-W. Scheidt, W. Scherer, W. Hermes, R. Pöttgen, *Phys. Rev. B* **2008**, 78, 214420.
- [19] W. Hermes, S. F. Matar, R. Pöttgen, Z. Naturforsch. 2009, 64b, 901.
- [20] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift 1999, 43, 133.
- [21] D. Kußmann, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem. 1998, 624, 1727.
- [22] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.
- [23] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, (Göttingen) Germany 1997. See also: G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112.
- [24] H. D. Flack, G. Bernadinelli, Acta Crystallogr. 1999, A55, 908.
- [25] H. D. Flack, G. Bernadinelli, J. Appl. Crystallogr. 2000, 33, 1143.
- [26] F. M. Schappacher, R. Pöttgen, Monatsh. Chem. 2008, 139, 1137.
- [27] J. Emsley, *The Elements*, Oxford University Press, Oxford 1999.
- [28] C. S. Garde, J. Ray, J. Magn. Magn. Mater. 1998, 189, 293.